Dinucleotide Step Parameterization of Pre-miRNAs Using Multi-objective Evolutionary Algorithms

نویسندگان

  • Jin-Wu Nam
  • In-Hee Lee
  • Kyu Baek Hwang
  • Seong-Bae Park
  • Byoung-Tak Zhang
چکیده

MicroRNAs (miRNAs) form a large functional family of small noncoding RNAs and play an important role as posttranscriptional regulators, by repressing the translation of mRNAs. Recently, the processing mechanism of miRNAs has been reported to involve Drosha/DGCR8 complex and Dicer, however, the exact mechanism and molecular principle are still unknown. We thus have tried to understand the related phenomena in terms of the tertiary structure of pre-miRNA. Unfortunately, the tertiary structure of RNA double helix has not been studied sufficiently compared to that of DNA double helix. The tertiary structure of pre-miRNA double helix is determined by 15 types of dinucleotide step (d-step) parameters for three classes of angles, i.e., twist, roll, and tilt. In this study, we estimate the 45 d-step parameters (15 types by 3 classes) using an evolutionary algorithm, under several assumptions inferred from the literature. Considering the trade-off among the four objective functions in our study, we deployed a multi-objective evolutionary algorithm, NSGA-II, to the search for a nondominant set of parameters. The performance of our method was evaluated on a separate test dataset. Our study provides a novel approach to understanding the processing mechanism of pre-miRNAs with respect to their tertiary structure and would be helpful for developing a comprehensible prediction method for pre-miRNA and mature miRNA structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Pareto Optimal Solutions of Multi objective Optimal Control Problems by Evolutionary Algorithms

In this paper an approach based on evolutionary algorithms to find Pareto optimal pair of state and control for multi-objective optimal control problems (MOOCP)'s is introduced‎. ‎In this approach‎, ‎first a discretized form of the time-control space is considered and then‎, ‎a piecewise linear control and a piecewise linear trajectory are obtained from the discretized time-control space using ...

متن کامل

Multi-layer Clustering Topology Design in Densely Deployed Wireless Sensor Network using Evolutionary Algorithms

Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasin...

متن کامل

Multi-objective Optimization of a Solar Driven Combined Power and Refrigeration System Using Two Evolutionary Algorithms Based on Exergoeconomic Concept

This paper deals with a multi-objective optimization of a novel micro solar driven combined power and ejector refrigeration system (CPER). The system combines an organic Rankine cycle (ORC) with an ejector refrigeration cycle to generate electricity and cold capacity simultaneously. Major thermodynamic parameters, namely turbine inlet temperature, turbine inlet pressure, turbine back pressure, ...

متن کامل

Solving ‎‎‎Multi-objective Optimal Control Problems of chemical ‎processes ‎using ‎Hybrid ‎Evolutionary ‎Algorithm

Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier‎. ‎This paper applies an evolutionary optimization scheme‎, ‎inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...

متن کامل

Using composite ranking to select the most appropriate Multi-Criteria Decision Making (MCDM) method in the optimal operation of the Dam reservoir

In this study, the performance of the algorithms of whale, Differential evolutionary, crow search, and Gray Wolf optimization were evaluated to operate the Golestan Dam reservoir with the objective function of meeting downstream water needs. Also, after defining the objective function and its constraints, the convergence degree of the algorithms was compared with each other and with the absolut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007